<table>
<thead>
<tr>
<th>TIME</th>
<th>TOPIC</th>
<th>PRESENTER</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00</td>
<td>Opening Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Fluorescence lifetime-activated droplet sorting (FLADS) in microfluidic chip systems</td>
<td>University Leipzig</td>
<td>GERMANY</td>
</tr>
<tr>
<td>11:25</td>
<td>Biochip for detection of bacteria using surface enhanced Raman spectroscopy (SERS)</td>
<td>French National Center for Scientific Research (CNRS) - Ecole Polytechnique</td>
<td>FRANCE</td>
</tr>
<tr>
<td>11:40</td>
<td>Roll-to-roll printed graphene biosensor</td>
<td>Fraunhofer-Institute for Biomedical Engineering IBMT</td>
<td>GERMANY</td>
</tr>
<tr>
<td>12:00</td>
<td>World’s first fully (hybrid) integrated and wafer scale manufacturable photonic interferometric biosensor-array chip-module with unparalleled sensitivity, applicable in both companion/complementary diagnostics and drug screening/optimization</td>
<td>LioniX International BV</td>
<td>NETHERLANDS</td>
</tr>
<tr>
<td>12:20</td>
<td>Fluidic platform for vascularized Organs-on-a-Chip</td>
<td>Karlsruhe Institute of Technology</td>
<td>GERMANY</td>
</tr>
<tr>
<td>12:40</td>
<td>Scalable wafer level production of consumables for Life Science and Diagnostic Applications made of non-CMOS compatible materials on Glass.</td>
<td>Heidenhain</td>
<td>SWITZERLAND</td>
</tr>
<tr>
<td>13:00</td>
<td>Precise Contactless Spotting for Lab-on-Chip Applications</td>
<td>microdrop Technologies GmbH</td>
<td>GERMANY</td>
</tr>
<tr>
<td>13:30</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Laser-assisted generation of microarrays for diagnostics and disease research</td>
<td>Max Planck Institute of Colloids and Interfaces</td>
<td>GERMANY</td>
</tr>
<tr>
<td>14:20</td>
<td>A Fluid-Walled Microfluidic Device for Cell Migration Studies</td>
<td>University of Oxford</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>14:50</td>
<td>Low volume (pL, nL, µL) dispensing application within biochip or microfluids</td>
<td>M24You GmbH</td>
<td>GERMANY</td>
</tr>
<tr>
<td>15:20</td>
<td>Microfluidic infrastructure for biochip integration</td>
<td>Fraunhofer Institute for Electronic Nano Systems ENAS</td>
<td>GERMANY</td>
</tr>
<tr>
<td>15:45</td>
<td>A versatile microfluidic system to emulate human physiology applied to organ on a chip and 3D cell culture.</td>
<td>Cherry Biotech</td>
<td>FRANCE</td>
</tr>
<tr>
<td>15:55</td>
<td>A BICMOS high-frequency biosensor for dielectric spectroscopy of bio-fluids for medical diagnostics</td>
<td>IHP GmbH</td>
<td>GERMANY</td>
</tr>
<tr>
<td>16:25</td>
<td>End</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>Opening Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10</td>
<td>Protein microarray for SIRS detection</td>
<td>Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering - IMTEK University of Freiburg</td>
<td>GERMANY</td>
</tr>
<tr>
<td>11:30</td>
<td>Roll-to-Roll Imprinting and Microarray Spotting of Biosensors</td>
<td>JOANNEUM RESEARCH Forschungsgesellschaft mbH</td>
<td>AUSTRIA</td>
</tr>
<tr>
<td>11:50</td>
<td>Scalable hybrid microelectronic-microfluidic integration of highly sensitive biosensors</td>
<td>TU Berlin</td>
<td>GERMANY</td>
</tr>
<tr>
<td>12:10</td>
<td>3D printing of micromechanical structures for personal medicine</td>
<td>Femtika</td>
<td>LITHUANIA</td>
</tr>
<tr>
<td>12:35</td>
<td>Personal biochips</td>
<td>University of Colorado Boulder</td>
<td>USA</td>
</tr>
<tr>
<td>13:00</td>
<td>Autonomous Plug&Play Multi-Organ-Chips with Integrated Pumping and Sensing</td>
<td>Fraunhofer Institute for Material and Beam Technology IWS</td>
<td>GERMANY</td>
</tr>
<tr>
<td>13:15</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:45</td>
<td>Online Monitoring of Metabolic Activity or Growth Conditions in Microfluidics</td>
<td>PreSens Precision Sensing GmbH</td>
<td>GERMANY</td>
</tr>
<tr>
<td>14:15</td>
<td>Stimuli-Responsive Protein Polymers for Bioseparations and Assays</td>
<td>ETH Zurich & University of Basel</td>
<td>SWITZERLAND</td>
</tr>
<tr>
<td>14:35</td>
<td>Nanocomposite based Biochip for detection of choline as an essential nutritive in food industry and as a biomarker for early diagnosis of neurological disorders</td>
<td>TU Bergakademie Freiberg</td>
<td>GERMANY</td>
</tr>
<tr>
<td>14:55</td>
<td>Customer-specific integrated microelectronics for the application in life-sciences</td>
<td>IMMS Institut</td>
<td>GERMANY</td>
</tr>
<tr>
<td>15:15</td>
<td>The OrganoPlate: Human organ-on-a-chip tissue models for predictive drug testing in high throughput</td>
<td>Mimetas</td>
<td>netherlands</td>
</tr>
<tr>
<td>15:30</td>
<td>Microfluidics for Marine Science</td>
<td>Jade University of Applied Science</td>
<td>GERMANY</td>
</tr>
<tr>
<td>16:00</td>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Be aware that the start and end times for each session are tentative. This schedule is updated frequently and the conference agenda is subject to change without prior notice. Check back for updates on www.biochip-berlin.de. (Lasted updated: 24.04.2019)